Finite Vertex Algebras and Nilpotence

نویسندگان

  • ALESSANDRO D’ANDREA
  • A. D’ANDREA
چکیده

I show that simple finite vertex algebras are commutative, and that the Lie conformal algebra structure underlying a reduced (= without nilpotent elements) finite vertex algebra is nilpotent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hamiltonian property for nilpotent algebras

In this paper we show that any finite algebra A satisfying a weak left nilpotence condition has the property that all maximal subuniverses are congruence blocks. Conversely, if every subalgebra of A has the property that all maximal subuniverses are congruence blocks, then A satisfies the aforementioned nilpotence condition.

متن کامل

Hochschild Cohomology and Support Varieties for Tame Hecke Algebras

We give a basis for the Hochschild cohomology ring of tame Hecke algebras. We then show that the Hochschild cohomology ring modulo nilpotence is a finitely generated algebra of Krull dimension 2, and describe the support varieties of modules for these algebras.

متن کامل

Some finiteness properties of regular vertex operator algebras

We give a natural extension of the notion of the contragredient module for a vertex operator algebra. By using this extension we prove that for regular vertex operator algebras, Zhu’s C2-finiteness condition holds, fusion rules (for any three irreducible modules) are finite and the vertex operator algebras themselves are finitely generated.

متن کامل

BCK-ALGEBRAS AND HYPER BCK-ALGEBRAS INDUCED BY A DETERMINISTIC FINITE AUTOMATON

In this note first we define a BCK‐algebra on the states of a deterministic finite automaton. Then we show that it is a BCK‐algebra with condition (S) and also it is a positive implicative BCK‐algebra. Then we find some quotient BCK‐algebras of it. After that we introduce a hyper BCK‐algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite...

متن کامل

Integral forms in vertex operator algebras which are invariant under finite groups

For certain vertex operator algebras (e.g., lattice type) and given finite group of automorphisms, we prove existence of a positive definite integral form invariant under the group. Applications include an integral form in the Moonshine VOA which is invariant under the Monster, and examples in other lattice type VOAs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008